Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(2): 436-447, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38088805

RESUMO

Artificial protein cages have great potential in diverse fields including as vaccines and drug delivery vehicles. TRAP-cage is an artificial protein cage notable for the way in which the interface between its ring-shaped building blocks can be modified such that the conditions under which cages disassemble can be controlled. To date, TRAP-cages have been constructed from homo-11mer rings, i.e., hendecamers. This is interesting as convex polyhedra with identical regular faces cannot be formed from hendecamers. TRAP-cage overcomes this limitation due to intrinsic flexibility, allowing slight deformation to absorb any error. The resulting TRAP-cage made from 24 TRAP 11mer rings is very close to regular with only very small errors necessary to allow the cage to form. The question arises as to the limits of the error that can be absorbed by a protein structure in this way before the formation of an apparently regular convex polyhedral becomes impossible. Here we use a naturally occurring TRAP variant consisting of twelve identical monomers (i.e., a dodecamer) to probe these limits. We show that it is able to form an apparently regular protein cage consisting of twelve TRAP rings. Comparison of the cryo-EM structure of the new cage with theoretical models and related cages gives insight into the rules of cage formation and allows us to predict other cages that may be formed given TRAP-rings consisting of different numbers of monomers.


Assuntos
Proteínas
2.
Methods Mol Biol ; 2671: 49-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37308637

RESUMO

Artificial protein cages made from multiple copies of a single protein can be produced such that they only assemble upon addition of a metal ion. Consequently, the ability to remove the metal ion triggers protein-cage disassembly. Controlling assembly and disassembly has many potential uses including cargo loading/unloading and hence drug delivery. TRAP-cage is an example of such a protein cage which assembles due to linear coordination bond formation with Au(I) which acts to bridge constituent proteins. Here we describe the method for production and purification of TRAP-cage.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro
3.
Sci Adv ; 8(1): eabj9424, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985943

RESUMO

Engineered protein cages are promising tools that can be customized for applications in medicine and nanotechnology. A major challenge is developing a straightforward strategy for endowing cages with bespoke, inducible disassembly. Such cages would allow release of encapsulated cargoes at desired timing and location. Here, we achieve such programmable disassembly using protein cages, in which the subunits are held together by different molecular cross-linkers. This modular system enables cage disassembly to be controlled in a condition-dependent manner. Structural details of the resulting cages were determined using cryo­electron microscopy, which allowed observation of bridging cross-linkers at intended positions. Triggered disassembly was demonstrated by high-speed atomic force microscopy and subsequent cargo release using an encapsulated Förster resonance energy transfer pair whose signal depends on the quaternary structure of the cage.

4.
Biomacromolecules ; 22(10): 4146-4154, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499838

RESUMO

Artificial protein cages have potential as programmable, protective carriers of fragile macromolecules to cells. While natural cages and VLPs have been extensively exploited, the use of artificial cages to deliver active proteins to cells has not yet been shown. TRAP-cage is an artificial protein cage with an unusual geometry and extremely high stability, which can be triggered to break apart in the presence of cellular reducing agents. Here, we demonstrate that TRAP-cage can be filled with a protein cargo and decorated with a cell-penetrating peptide, allowing it to enter cells. Tracking of both the TRAP-cage and the cargo shows that the protein of interest can be successfully delivered intracellularly in the active form. These results provide a valuable proof of concept for the further development of TRAP-cage as a delivery platform.


Assuntos
Nanotecnologia , Proteínas , Humanos , Conformação Proteica , Proteínas/química
5.
Curr Opin Struct Biol ; 64: 66-73, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619876

RESUMO

Protein cages are hollow, often spherical, protein structures. They are scientifically interesting for reasons including their capability to serve as protective containers for delivering medically useful cargoes to cells. Design and construction of artificial protein cages is a powerful strategy enabling them to be endowed with bespoke properties not seen in natural forms. To this end, structural studies are a vital tool: Structural analyses of naturally existing protein cages can provide an inspiration for artificial designs while determining structures of artificial proteins can confirm that they match expected designs and cryo-EM is now the tool of choice to achieve this. In this review we describe how natural protein cage structures can inform the design of artificial versions and how, in turn, these can exceed the limitations of their natural counterparts.


Assuntos
Proteínas , Microscopia Crioeletrônica , Proteínas/química
6.
Nature ; 569(7756): 438-442, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068697

RESUMO

Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery1, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein-protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging2,3. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein-protein interfaces. The addition of a gold (I)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S-Aui-S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(II) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.


Assuntos
Ouro/química , Proteínas/química , Microscopia Crioeletrônica , Cisteína/química , Mercúrio/química , Modelos Moleculares , Proteínas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...